Edge-transitive graphs

“WeRegular graphs”

We consider simple connected regular edge-transitive graphs with \(n \leq 15 \) vertices.

\[n = 7. \]

\(n = 2. \)

- Complete graph \(K_2 \)

\(n = 3. \)

- Cycle \(C_3 \) (Complete graph \(K_3 \), Triangle)

\(n = 4. \)

- Cycle \(C_4 \) (Quadrilateral)
- Complete graph \(K_4 \) (Tetrahedron)

\(n = 5. \)

- Cycle \(C_5 \) (Pentagon)
- Complete graph \(K_5 \)

\(n = 6. \)

- Cycle \(C_6 \) (Hexagon)
- Complete bipartite graph \(K_{3,3} \)
- Cocktail party graph \(CP(3) \) (Octahedron)
- Complete graph \(K_6 \)

\(n = 8. \)

- Complete graph \(K_7 \)

\(n = 8. \)

- Complete bipartite graph \(K_{4,4} \)
- Cocktail party graph \(CP(4) \)

\(n = 9. \)

- Complete graph \(K_8 \)
- Complete tripartite graph \(K_{3,3,3} \)
A. 2 Edge-transitive graphs

$n = 10$.

- Cycle C_{10} (Decagon)
- Petersen graph
- Circulant graph $C_{i_{10}}(1, 3)$
- Circulant graph $C_{i_{10}}(1, 4)$
- Complete bipartite graph $K_{5, 5}$
- Triangular graph $T(5)$
- Cocktail party graph $CP(5)$
- Complete graph K_{10}

$n = 12$.

- Cycle C_{12}
- Circulant graph $C_{i_{12}}(1, 5)$
- Bipartite graph with 6,6-points
- Icosahedron
- Bipartite graph with 6,6-points
- Circulant graph $C_{i_{12}}(1, 2, 5)$
- Complete bipartite graph $K_{6, 6}$
- Complete tripartite graph $K_{4, 4, 4}$
- Complete 4-partite graph $K_{3, 3, 3, 3}$

$n = 11$.

- Cycle C_{11}
- Complete graph K_{11}
Edge-transitive graphs

$n = 14$.

- Cocktail party graph $CP(7)$
- Complete graph K_{14}

$n = 13$.

- Cocktail party graph $CP(6)$
- Complete graph K_{12}

- Cycle C_{13}
- Circulant graph $C_{i_{13}}(1, 6)$
- Circulant graph $C_{i_{13}}(1, 3, 5)$
- Circulant graph $C_{i_{13}}(1, 3, 5, 7)$

- Bipartite graph with 7, 7-points
- Circulant graph $C_{i_{14}}(1, 6)$
- Circulant graph $C_{i_{14}}(1, 3, 5)$

- Complete graph K_{13}
- Complete graph K_{14}
$n = 15$.

- Cycle C_{15}
- Circulant graph $Ci_{15}(1, 4)$
- Circulant graph $Ci_{15}(1, 2, 4, 5, 7)$
- Circulant graph $Ci_{15}(1, 2, 3, 4, 6, 7)$
- Complete graph K_{15}
- Circulant graph $Ci_{15}(1, 4, 6)$
- Complement graph $T(6)$
- Circulant graph $Ci_{15}(1, 2, 4, 7)$
- Triangular graph $T(6)$
“Bipartite graphs”

We consider simple connected edge-transitive graphs with \(n \leq 15 \) vertices of not regular, that is, bipartite.

\(\text{n = 3.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,2} \\
\text{Complete bipartite graph } K_{1,3}
\end{align*}
\]

\(\text{n = 4.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,3} \\
\text{Complete bipartite graph } K_{2,3}
\end{align*}
\]

\(\text{n = 5.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,4} \\
\text{Complete bipartite graph } K_{2,3} \\
\text{Complete bipartite graph } K_{2,4}
\end{align*}
\]

\(\text{n = 6.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,5} \\
\text{Complete bipartite graph } K_{2,4} \\
\text{Complete bipartite graph } K_{2,5}
\end{align*}
\]

\(\text{n = 7.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,6} \\
\text{Complete bipartite graph } K_{2,5} \\
\text{Complete bipartite graph } K_{3,4}
\end{align*}
\]

\(\text{n = 8.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,7} \\
\text{Complete bipartite graph } K_{2,6} \\
\text{Complete bipartite graph } K_{3,5}
\end{align*}
\]

\(\text{n = 9.} \)

\[
\begin{align*}
\text{Complete bipartite graph } K_{1,8} \\
\text{Complete bipartite graph } K_{2,7} \\
\text{Complete bipartite graph } K_{3,6} \\
\text{Bipartite graph with 3,6-points} \\
\text{Complete bipartite graph } K_{4,5}
\end{align*}
\]
A. 6

Edge-transitive graphs

\[n = 10. \]

- Complete bipartite graph \(K_{1,9} \)
- Complete bipartite graph \(K_{2,8} \)
- Complete bipartite graph \(K_{3,7} \)
- Complete bipartite graph \(K_{4,6} \)
- Bipartite graph with 4,6-points

\[n = 11. \]

- Complete bipartite graph \(K_{1,10} \)
- Complete bipartite graph \(K_{2,9} \)
- Complete bipartite graph \(K_{3,8} \)
- Complete bipartite graph \(K_{4,7} \)
- Complete bipartite graph \(K_{5,6} \)
- Complete bipartite graph \(K_{1,11} \)
- Complete bipartite graph \(K_{2,10} \)
- Complete bipartite graph \(K_{3,9} \)
- Complete bipartite graph \(K_{4,8} \)
- Complete bipartite graph \(K_{5,7} \)
- Bipartite graph with 3,9-points
- Bipartite graph with 4,8-points
- Bipartite graph with 4,8-points
$n = 13.$

- Complete bipartite graph $K_{1,12}$
- Complete bipartite graph $K_{2,11}$
- Complete bipartite graph $K_{3,10}$
- Complete bipartite graph $K_{4,9}$
- Complete bipartite graph $K_{5,8}$
- Complete bipartite graph $K_{6,7}$

$n = 14.$

- Complete bipartite graph $K_{1,13}$
- Complete bipartite graph $K_{2,12}$
- Complete bipartite graph $K_{3,11}$
- Complete bipartite graph $K_{4,10}$
- Complete bipartite graph $K_{5,9}$
- Complete bipartite graph $K_{6,8}$

Bipartite graph with 6,8-points

Bipartite graph with 6,8-points
A. 8

Edge-transitive graphs

\(n = 15 \).

- Complete bipartite graph \(K_{1,14} \)
- Complete bipartite graph \(K_{2,13} \)
- Complete bipartite graph \(K_{3,12} \)
- Complete bipartite graph \(K_{4,11} \)
- Complete bipartite graph \(K_{5,10} \)
- Complete bipartite graph \(K_{6,9} \)
- Complete bipartite graph \(K_{7,8} \)
Incomplete bipartite graphs

We consider incomplete bipartite graphs which are simple, connected, and edge-transitive graphs with $n \leq 15$ vertices.

- $(3, 3)$ Cycle C_6
- $(4, 4)$ Cycle C_8
- $(3, 6)$ Hamming graph $H(3, 2)$
- $(3, 9)$
- $(4, 6)$
- $(5, 5)$ Cycle C_{10}
- $(4, 8)$
- $(6, 6)$
- $(6, 8)$ Cycle C_{12}
- $(6, 8)$ Circulant graph $Ci_{10}(1, 3)$
A. 10

Edge-transitive graphs

(7, 7) Cycle C_{14}

(6, 9)

(3, 12)

(5, 10)
Distance regular graphs

“Strongly regular graphs”

We consider simple connected strongly regular graphs with $n \leq 15$ vertices.

$n = 2.$

- Complete graph K_2

$n = 3.$

- Complete graph K_3

$n = 4.$

- Cycle C_4
- Complete graph K_4

$n = 5.$

- Cycle C_5
- Complete graph K_5

$n = 6.$

- Complete bipartite graph $K_{3,3}$
- Cocktail party graph $CP(3)$
- Complete graph K_6

$n = 7.$

- Complete graph K_7

$n = 8.$

- Complete bipartite graph $K_{4,4}$
- Cocktail party graph $CP(4)$
- Complete graph K_8

$n = 9.$

- Square lattice graph $L_2(3)$
- Complete tripartite graph $K_{3,3,3}$
- Complete graph K_9
A. 12. Distance regular graphs

\(n = 10. \)

- Petersen graph
- Complete bipartite graph \(K_{5,5} \)
- Triangular graph \(T(5) \)
- Cocktail party graph \(CP(5) \)
- Complete graph \(K_{10} \)

\(n = 11. \)

- Complete graph \(K_{11} \)

\(n = 12. \)

- Complete bipartite graph \(K_{6,6} \)
- Complete tripartite graph \(K_{4,4,4} \)
- Complete 4-partite graph \(K_{3,3,3,3} \)
- Cocktail party graph \(CP(6) \)
- Complete graph \(K_{12} \)

\(n = 13. \)

- Circulant graph \(Ci_{13}(1,3,4) \)
- Complete graph \(K_{13} \)
Distance regular graphs

“Weakly regular graphs”

We consider simple connected distance regular graphs of not strongly regular with $n \leq 15$ vertices.

$n = 14.$

- Circulant graph $C_{i_{14}}(1, 3, 5, 7)$
- Cocktail party graph $CP(7)$
- Complete graph K_{14}

$n = 6.$

- Cycle C_6

$n = 7.$

- Cycle C_7

$n = 8.$

- Cycle C_8
- Hamming graph $H(3, 2)$

$n = 9.$

- Cycle C_9

$n = 10.$

- Cycle C_{10}

$n = 15.$

- Circulant graph $C_{i_{15}}(1, 2, 4, 5, 7)$
- Circulant graph $C_{i_{15}}(1, 2, 3, 4, 6, 7)$
- Complete graph K_{15}

$n = 15.$

- Circulant graph $C_{i_{10}}(1, 3)$
A. 14 Distance regular graphs

\(n = 11. \)

- Cycle \(C_{11} \)

\(n = 12. \)

- Cycle \(C_{12} \)
- Icosahedron
- Bipartite graph with 6, 6-points

\(n = 13. \)

- Cycle \(C_{13} \)

\(n = 14. \)

- Cycle \(C_{14} \)
- Bipartite graph with 7, 7-points
- Bipartite graph with 7, 7-points
- Circulant graph \(Ci_{14}(1, 3, 5) \)

\(n = 15. \)

- Cycle \(C_{15} \)